Pubmed ID Article Details
21179488 Ben Amara A et al.: Coxiella burnetii, the agent of Q fever, replicates within trophoblasts and induces a unique transcriptional response PLoS ONE 2010 5
21030501 Oyston PC et al.: Q fever: the neglected biothreat agent J. Med. Microbiol. 2011 60: 9-21
10217829 Heinzen RA et al.: Developmental biology of Coxiella burnettii Trends Microbiol. 1999 7: 149-154
20023428 Vazquez CL et al.: Beclin 1 modulates the anti-apoptotic activity of Bcl-2: insights from a pathogen infection system Autophagy 2010 6: 177-178
18813881 Shannon JG et al.: Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii Immunol. Res. 2009 43: 138-148
17381428 Voth DE et al.: Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii Cell. Microbiol. 2007 9: 829-840
19538264 Ghigo E et al.: Intracellular life of Coxiella burnetii in macrophages Ann. N. Y. Acad. Sci. 2009 1166: 55-66
20455682 Gikas A et al.: Q fever: clinical manifestations and treatment Expert Rev Anti Infect Ther 2010 8: 529-539
22522687 Beare PA et al.: Two Systems for Targeted Gene Deletion in Coxiella burnetii Appl. Environ. Microbiol. 2012 78: 4580-4589
21216993 Voth DE et al.: The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates J. Bacteriol. 2011 193: 1493-1503
20199576 Morgan JK et al.: Polar localization of the Coxiella burnetii type IVB secretion system FEMS Microbiol. Lett. 2010 305: 177-183
22711632 McDonough JA et al.: Coxiella burnetii Secretion Systems Adv. Exp. Med. Biol. 2012 984: 171-197
22711631 Ghigo E et al.: The Coxiella burnetii Parasitophorous Vacuole Adv. Exp. Med. Biol. 2012 984: 141-169
20937765 Campoy EM et al.: The early secretory pathway contributes to the growth of the Coxiella-replicative niche Infect. Immun. 2011 79: 402-413
21772829 Hussain SK et al.: Host Kinase Activity is Required for Coxiella burnetii Parasitophorous Vacuole Formation Front Microbiol 2010 1: 137
20515926 Howe D et al.: Coxiella burnetii phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages Infect. Immun. 2010 78: 3465-3474
22711626 Mertens K et al.: Defense Mechanisms Against Oxidative Stress in Coxiella burnetii: Adaptation to a Unique Intracellular Niche Adv. Exp. Med. Biol. 2012 984: 39-63
22711633 Gilk SD et al.: Role of Lipids in Coxiella burnetii Infection Adv. Exp. Med. Biol. 2012 984: 199-213
21616182 Skultety L et al.: Proteomic comparison of virulent phase I and avirulent phase II of Coxiella burnetii, the causative agent of Q fever J Proteomics 2011 74: 1974-1984
22711629 Ihnatko R et al.: Proteome of Coxiella burnetii Adv. Exp. Med. Biol. 2012 984: 105-130
22711638 Amara AB et al.: Immune Response and Coxiella burnetii Invasion Adv. Exp. Med. Biol. 2012 984: 287-298
18768823 Benoit M et al.: Macrophage polarization in bacterial infections J. Immunol. 2008 181: 3733-3739
20944063 Luhrmann A et al.: Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein Proc. Natl. Acad. Sci. U.S.A. 2010 107
22711637 Capo C et al.: Role of innate and adaptive immunity in the control of q Fever Adv. Exp. Med. Biol. 2012 984: 273-286
22010216 Newton HJ et al.: The Coxiella burnetii Dot/Icm system creates a comfortable home through lysosomal renovation
22711635 Minnick MF et al.: Developmental biology of Coxiella burnetii Adv. Exp. Med. Biol. 2012 984: 231-248
22711630 Hussain SK et al.: Coxiella subversion of intracellular host signaling Adv. Exp. Med. Biol. 2012 984: 131-140
20173000 Hicks LD et al.: A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth J. Bacteriol. 2010 192: 2077-2084
23126667 Klingenbeck L et al.: The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level
21637816 Carey KL et al.: The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication PLoS Pathog. 2011 7
23176480 Hardiman CA et al.: The role of Rab GTPases in the transport of vacuoles containing Legionella pneumophila and Coxiella burnetii Biochem. Soc. Trans. 2012 40: 1353-1359
22984121 Mehraj V et al.: Overexpression of the per2 gene in male patients with acute q Fever J. Infect. Dis. 2012 206: 1768-1770
22711640 van der Hoek W et al.: Epidemic Q fever in humans in the Netherlands Adv. Exp. Med. Biol. 2012 984: 329-364
23052984 Angelakis E et al.: Q fever and pregnancy: disease, prevention, and strain specificity Eur. J. Clin. Microbiol. Infect. Dis. 2013 32: 361-368
17353158 Meghari S et al.: Coxiella burnetii stimulates production of RANTES and MCP-1 by mononuclear cells: modulation by adhesion to endothelial cells and its implication in Q fever Eur. Cytokine Netw. 2006 17: 253-259
23245320 Barry AO et al.: Impaired Stimulation of p38alpha-MAPK/Vps41-HOPS by LPS from Pathogenic Coxiella burnetii Prevents Trafficking to Microbicidal Phagolysosomes Cell Host Microbe 2012 12: 751-763
18981248 Voth DE et al.: Sustained activation of Akt and Erk1/2 is required for Coxiella burnetii antiapoptotic activity Infect. Immun. 2009 77: 205-213
23163207 Chmielewski T et al.: Q fever at the turn of the century Pol. J. Microbiol. 2012 61: 81-93
22711627 Narasaki CT et al.: Lipopolysaccharide of Coxiella burnetii Adv. Exp. Med. Biol. 2012 984: 65-90
22065988 Narasaki CT et al.: Characterization of the GDP-D-mannose biosynthesis pathway in Coxiella burnetii: the initial steps for GDP-beta-D-virenose biosynthesis PLoS ONE 2011 6
15792739 Raoult D et al.: Natural history and pathophysiology of Q fever Lancet Infect Dis 2005 5: 219-226
23349930 Newton HJ et al.: Effector Protein Translocation by the Coxiella burnetii Dot/Icm Type IV Secretion System Requires Endocytic Maturation of the Pathogen-Occupied Vacuole PLoS ONE 2013 8
23362322 McDonough JA et al.: Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening MBio 2013 4
23358892 Gilk SD et al.: Bacterial colonization of host cells in the absence of cholesterol PLoS Pathog. 2013 9
18797945 Sekeyova Z et al.: Identification of protein candidates for the serodiagnosis of Q fever endocarditis by an immunoproteomic approach Eur. J. Clin. Microbiol. Infect. Dis. 2009 28: 287-295
23382224 Lifshitz Z et al.: Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal Proc. Natl. Acad. Sci. U.S.A. 2013 110: E707-E715
23687269 Maturana P et al.: Refining the plasmid-encoded type IV secretion system substrate repertoire of Coxiella burnetii J. Bacteriol. 2013 195: 3269-3276
23813730 Weber MM et al.: Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation J. Bacteriol. 2013 195: 3914-3924
24028560 Macdonald LJ et al.: Coxiella burnetii exploits host cAMP-dependent protein kinase signalling to promote macrophage survival
22473604 MacDonald LJ et al.: Coxiella burnetii alters cyclic AMP-dependent protein kinase signaling during growth in macrophages Infect. Immun. 2012 80: 1980-1986
24093460 Stead CM et al.: Sec-mediated secretion by Coxiella burnetii BMC Microbiol. 2013 13: 222
24248335 Larson CL et al.: Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis Proc. Natl. Acad. Sci. U.S.A. 2013 110
24082077 Elliott A et al.: Coxiella burnetii interaction with neutrophils and macrophages in vitro and in SCID mice following aerosol infection Infect. Immun. 2013 81: 4604-4614
24733095 Eckart RA et al.: The anti-apoptotic activity of the Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking
26687278 Cunha LD et al.: Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA Nat Commun 2015 6: 10205
10922036 Parsek MR et al.: Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. U.S.A. 2000 97: 8789-8793
15695491 Sadikot RT et al.: Pathogen-host interactions in Pseudomonas aeruginosa pneumonia Am. J. Respir. Crit. Care Med. 2005 171: 1209-1223
20723140 Williams BJ et al.: Pseudomonas aeruginosa: host defence in lung diseases. Respirology 2010 15: 1037-1056
20338154 Furlong CE et al.: Human PON1, a biomarker of risk of disease and exposure. Chem. Biol. Interact. 2010 187: 355-361
20336292 Abdel-Mawgoud AM et al.: Rhamnolipids: diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 2010 86: 1323-1336
20370936 Bjarnsholt T et al.: Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Rev Mol Med 2010 12: E11
18704225 Dubern JF et al.: Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 2008 4: 882-888
19196266 de Kievit TR et al.: Quorum sensing in Pseudomonas aeruginosa biofilms. Environ. Microbiol. 2009 11: 279-288
17254955 Diggle SP et al.: The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem. Biol. 2007 14: 87-96
20738404 Heeb S et al.: Quinolones: from antibiotics to autoinducers. FEMS Microbiol. Rev. 2011 35: 247-274
21478251 Sayner SL et al.: Filamin A is a phosphorylation target of membrane but not cytosolic adenylyl cyclase activity. Am. J. Physiol. Lung Cell Mol. Physiol. 2011 301: L117-L124
19680249 Hauser AR et al.: The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat. Rev. Microbiol. 2009 7: 654-665
16207250 Ichikawa JK et al.: Genome-wide analysis of host responses to the Pseudomonas aeruginosa type III secretion system yields synergistic effects. Cell. Microbiol. 2005 7: 1635-1646
15901720 Bleves S et al.: Quorum sensing negatively controls type III secretion regulon expression in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2005 187: 3898-3902
19508282 Kang Y et al.: The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type III secretion exsCEBA operon in Pseudomonas aeruginosa. Mol. Microbiol. 2009 73: 120-136
18524913 Kang Y et al.: The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology (Reading 2008 154: 1584-1598
16428760 Shen DK et al.: PsrA is a positive transcriptional regulator of the type III secretion system in Pseudomonas aeruginosa Infect. Immun. 2006 74: 1121-1129
10903129 Henriksson ML et al.: 14-3-3 proteins are required for the inhibition of Ras by exoenzyme S. Biochem. J. 2000 349: 697-701
17765657 Wiedmaier N et al.: Bacteria induce CTGF and CYR61 expression in epithelial cells in a lysophosphatidic acid receptor-dependent manner. Int. J. Med. Microbiol. 2008 298: 231-243
16966406 Jia J et al.: Expression of Pseudomonas aeruginosa toxin ExoS effectively induces apoptosis in host cells. Infect. Immun. 2006 74: 6557-6570
16611230 Jansson AL et al.: Exoenzyme S of Pseudomonas aeruginosa is not able to induce apoptosis when cells express activated proteins, such as Ras or protein kinase B/Akt. Cell. Microbiol. 2006 8: 815-822
11829467 Fraylick JE et al.: Eukaryotic cell determination of ExoS ADP-ribosyltransferase substrate specificity. Biochem. Biophys. Res. Commun. 2002 291: 91-100
12761120 Jia J et al.: c-Jun NH2-terminal kinase-mediated signaling is essential for Pseudomonas aeruginosa ExoS-induced apoptosis. Infect. Immun. 2003 71: 3361-3370
10508420 Zhang L et al.: Residues of 14-3-3 zeta required for activation of exoenzyme S of Pseudomonas aeruginosa. Biochemistry 1999 38
20947426 Bleves S et al.: Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. Int. J. Med. Microbiol. 2010 300: 534-543
21811488 Filloux A et al.: Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function. Front Microbiol 2011 2: 155
18331590 Kida Y et al.: A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors. Cell. Microbiol. 2008 10: 1491-1504
18369477 Pielage JF et al.: RNAi screen reveals an Abl kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization. PLoS Pathog. 2008 4
16427231 Kipnis E et al.: Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect 2006 36: 78-91
21517912 Dean P et al.: Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol. Rev. 2011 35: 1100-1125
21901099 Bardoel BW et al.: Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathog. 2011 7
21840975 Funken H et al.: The lipase LipA (PA2862) but not LipC (PA4813) from Pseudomonas aeruginosa influences regulation of pyoverdine production and expression of the sigma factor PvdS. J. Bacteriol. 2011 193: 5858-5860
20546309 Rosenau F et al.: Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 2010 309: 25-34
19192306 Bauman SJ et al.: Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiol. 2009 9: 26
15306013 Barker AP et al.: A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol. Microbiol. 2004 53: 1089-1098
20693680 Otero LH et al.: Crystallization and preliminary X-ray diffraction analysis of Pseudomonas aeruginosa phosphorylcholine phosphatase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010 66: 957-960
19103776 Wargo MJ et al.: GbdR regulates Pseudomonas aeruginosa plcH and pchP transcription in response to choline catabolites. Infect. Immun. 2009 77: 1103-1111
20370820 Imperi F et al.: Transcriptional control of the pvdS iron starvation sigma factor gene by the master regulator of sulfur metabolism CysB in Pseudomonas aeruginosa. Environ. Microbiol. 2010 12: 1630-1642
18663005 Upritchard HG et al.: Immunoproteomics to examine cystic fibrosis host interactions with extracellular Pseudomonas aeruginosa proteins. Infect. Immun. 2008 76: 4624-4632
19064995 Venza I et al.: Pseudomonas aeruginosa induces interleukin-8 (IL-8) gene expression in human conjunctiva through the recruitment of both RelA and CCAAT/enhancer-binding protein beta to the IL-8 promoter. J. Biol. Chem. 2009 284: 4191-4199
21325275 Hachani A et al.: Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J. Biol. Chem. 2011 286
20511495 Bernard CS et al.: Nooks and crannies in type VI secretion regulation. J. Bacteriol. 2010 192: 3850-3860
19400797 Hsu F et al.: TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol. Microbiol. 2009 72: 1111-1125
20114026 Hood RD et al.: A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria Cell Host Microbe 2010 7: 25-37
21833328 Diaz MR et al.: Intrinsic and Extrinsic Regulation of Type III Secretion Gene Expression in Pseudomonas Aeruginosa. Front Microbiol 2011 2: 89
21955777 Moscoso JA et al.: The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling Environ. Microbiol. 2011 13: 3128-3138
21839744 Izore T et al.: Structural characterization and membrane localization of ExsB from the type III secretion system (T3SS) of Pseudomonas aeruginosa. J. Mol. Biol. 2011 413: 236-246
21987808 Limmer S et al.: Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc. Natl. Acad. Sci. U.S.A. 2011 108
21626144 Shin HS et al.: Up-regulation of bradykinin B2 receptor by Pseudomonas aeruginosa via the NF-kappaB pathway. Curr. Microbiol. 2011 63: 138-144
21531801 Elsen S et al.: PtrA is a periplasmic protein involved in Cu tolerance in Pseudomonas aeruginosa. J. Bacteriol. 2011 193: 3376-3378
21264306 Inclan YF et al.: FimL regulates cAMP synthesis in Pseudomonas aeruginosa. PLoS ONE 2011 6
22040088 Anderson DM et al.: Ubiquitin and ubiquitin-modified proteins activate the Pseudomonas aeruginosa T3SS cytotoxin, ExoU Mol. Microbiol. 2011 82: 1454-1467
16882033 Stirling FR et al.: Eukaryotic localization, activation and ubiquitinylation of a bacterial type III secreted toxin. Cell. Microbiol. 2006 8: 1294-1309
19931407 Lins RX et al.: ExoU modulates soluble and membrane-bound ICAM-1 in Pseudomonas aeruginosa-infected endothelial cells. Microbes Infect. 2010 12: 154-161
21776080 Russell AB et al.: Type VI secretion delivers bacteriolytic effectors to target cells Nature 2011 475: 343-347
22092568 Shin HS et al.: Up-regulation of human bradykinin B1 receptor by secreted components of Pseudomonas aeruginosa via a NF-kappaB pathway in epithelial cells. FEMS Immunol. Med. Microbiol. 2011 63: 418-426
21097525 Hurley BP et al.: Selective eicosanoid-generating capacity of cytoplasmic phospholipase A2 in Pseudomonas aeruginosa-infected epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2011 300: L286-L294
18411286 Hurley BP et al.: Multiple roles of phospholipase A2 during lung infection and inflammation. Infect. Immun. 2008 76: 2259-2272
21502078 Jyot J et al.: Type II secretion system of Pseudomonas aeruginosa: in vivo evidence of a significant role in death due to lung infection. J. Infect. Dis. 2011 203: 1369-1377
21184216 Schweizer HP et al.: Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production. Arch. Microbiol. 2011 193: 227-234
21184216 Schweizer HP et al.: Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production Arch. Microbiol. 2011 193: 227-234
21596130 Gloyne LS et al.: Pyocyanin-induced toxicity in A549 respiratory cells is causally linked to oxidative stress. Toxicol In Vitro 2011 25: 1353-1358
21343341 Chen BB et al.: Calmodulin antagonizes a calcium-activated SCF ubiquitin E3 ligase subunit, FBXL2, to regulate surfactant homeostasis. Mol. Cell. Biol. 2011 31: 1905-1920
21819560 Machado GB et al.: Pseudomonas aeruginosa toxin ExoU induces a PAF-dependent impairment of alveolar fibrin turnover secondary to enhanced activation of coagulation and increased expression of plasminogen activator inhibitor-1 in the course of mice pneumosepsis. Respir. Res. 2011 12: 104
20133635 Miao EA et al.: Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl. Acad. Sci. U.S.A. 2010 107: 3076-3080
21479247 Sato H et al.: Modified needle-tip PcrV proteins reveal distinct phenotypes relevant to the control of type III secretion and intoxication by Pseudomonas aeruginosa. PLoS ONE 2011 6
18070936 Sutterwala FS et al.: Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 2007 204: 3235-3245
16790784 Cuzick A et al.: The type III pseudomonal exotoxin U activates the c-Jun NH2-terminal kinase pathway and increases human epithelial interleukin-8 production. Infect. Immun. 2006 74: 4104-4113
20956573 Wu M et al.: Host DNA repair proteins in response to Pseudomonas aeruginosa in lung epithelial cells and in mice. Infect. Immun. 2011 79: 75-87
22017253 Silverman JM et al.: Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol. Microbiol. 2011 82: 1277-1290
22017253 Silverman JM et al.: Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation Mol. Microbiol. 2011 82: 1277-1290
21784934 Zhang L et al.: Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J. Bacteriol. 2011 193: 5510-5513
21787339 Bartlett JA et al.: PLUNC: a multifunctional surfactant of the airways. Biochem. Soc. Trans. 2011 39: 1012-1016
21515773 Chand NS et al.: The sensor kinase KinB regulates virulence in acute Pseudomonas aeruginosa infection J. Bacteriol. 2011 193: 2989-2999
21515773 Chand NS et al.: The sensor kinase KinB regulates virulence in acute Pseudomonas aeruginosa infection. J. Bacteriol. 2011 193: 2989-2999
19513205 Dong YH et al.: A novel two-component system BqsS-BqsR modulates quorum sensing-dependent biofilm decay in Pseudomonas aeruginosa Commun Integr Biol 2008 1: 88-96
22194456 Kreamer NN et al.: BqsR/BqsS constitute a two-component system that senses extracellular Fe(II) in Pseudomonas aeruginosa J. Bacteriol. 2012 194: 1195-1204
20398205 Bordi C et al.: Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol. Microbiol. 2010 76: 1427-1443
19602144 Brencic A et al.: The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol. Microbiol. 2009 73: 434-445
21659660 Dechecchi MC et al.: Modulators of sphingolipid metabolism reduce lung inflammation. Am. J. Respir. Cell Mol. Biol. 2011 45: 825-833
21502590 Sjoberg BM et al.: Shift in ribonucleotide reductase gene expression in Pseudomonas aeruginosa during infection Infect. Immun. 2011 79: 2663-2669
21829370 Kesarwani M et al.: A quorum sensing regulated small volatile molecule reduces acute virulence and promotes chronic infection phenotypes PLoS Pathog. 2011 7
21829370 Kesarwani M et al.: A quorum sensing regulated small volatile molecule reduces acute virulence and promotes chronic infection phenotypes. PLoS Pathog. 2011 7
22411978 Douzi B et al.: On the path to uncover the bacterial type II secretion system Philos. Trans. R. Soc. Lond. 2012 367: 1059-1072
19828448 Douzi B et al.: The XcpV/GspI pseudopilin has a central role in the assembly of a quaternary complex within the T2SS pseudopilus. J. Biol. Chem. 2009 284
21949187 Douzi B et al.: Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates. J. Biol. Chem. 2011 286
21772833 Sato H et al.: Multi-Functional Characteristics of the Pseudomonas aeruginosa Type III Needle-Tip Protein, PcrV; Comparison to Orthologs in other Gram-negative Bacteria. Front Microbiol 2011 2: 142
16487320 Broms JE et al.: Tetratricopeptide repeats are essential for PcrH chaperone function in Pseudomonas aeruginosa type III secretion. FEMS Microbiol. Lett. 2006 256: 57-66
12654846 Allmond LR et al.: Protein binding between PcrG-PcrV and PcrH-PopB/PopD encoded by the pcrGVH-popBD operon of the Pseudomonas aeruginosa type III secretion system. Infect. Immun. 2003 71: 2230-2233
22299042 Verove J et al.: Injection of Pseudomonas aeruginosa Exo Toxins into Host Cells Can Be Modulated by Host Factors at the Level of Translocon Assembly and/or Activity. PLoS ONE 2012 7
19910414 Bridge DR et al.: Role of host cell polarity and leading edge properties in Pseudomonas type III secretion. Microbiology (Reading 2010 156: 356-373
15901720 Bleves S et al.: Quorum sensing negatively controls type III secretion regulon expression in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2005 187: 3898-3902
11726509 Voulhoux R et al.: Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J. 2001 20: 6735-6741
16621825 Voulhoux R et al.: Pyoverdine-mediated iron uptake in Pseudomonas aeruginosa: the Tat system is required for PvdN but not for FpvA transport. J. Bacteriol. 2006 188: 3317-3323
19497948 Lesic B et al.: Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology (Reading 2009 155: 2845-2855
17941706 Lesic B et al.: Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog. 2007 3: 1229-1239
17307856 Soscia C et al.: Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa. J. Bacteriol. 2007 189: 3124-3132
20378835 Siehnel R et al.: A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 2010 107: 7916-7921
19360133 Bomberger JM et al.: Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 2009 5
21455491 Bomberger JM et al.: A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system. PLoS Pathog. 2011 7
22103313 Tashiro Y et al.: Multifunctional membrane vesicles in Pseudomonas aeruginosa Environ. Microbiol. 2012 14: 1349-1362
21747810 Engel J et al.: Subversion of mucosal barrier polarity by pseudomonas aeruginosa. Front Microbiol 2011 2: 114
22309196 Bardoel BW et al.: Identification of an immunomodulating metalloprotease of Pseudomonas aeruginosa (IMPa) Cell. Microbiol. 2012 14: 902-913
21189321 Fito-Boncompte L et al.: Full virulence of Pseudomonas aeruginosa requires OprF. Infect. Immun. 2011 79: 1176-1186
16051797 Wu L et al.: Recognition of host immune activation by Pseudomonas aeruginosa Science 2005 309: 774-777
19486157 McPhee JB et al.: The major outer membrane protein OprG of Pseudomonas aeruginosa contributes to cytotoxicity and forms an anaerobically regulated, cation-selective channel FEMS Microbiol. Lett. 2009 296: 241-247
22232685 Kung VL et al.: An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome Proc. Natl. Acad. Sci. U.S.A. 2012 109: 1275-1280
22103442 Hao Y et al.: Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2 Cell. Microbiol. 2012 14: 401-415
22354680 Coggan KA et al.: Global regulatory pathways and cross-talk control pseudomonas aeruginosa environmental lifestyle and virulence phenotype Curr Issues Mol Biol 2012 14: 47-70
15659157 Kulasekara HD et al.: A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes Mol. Microbiol. 2005 55: 368-380
19547710 Mikkelsen H et al.: Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators PLoS ONE 2009 4: E6018
20088866 Borlee BR et al.: Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix Mol. Microbiol. 2010 75: 827-842
20946878 Pu M et al.: Tyrosine phosphatase TpbA controls rugose colony formation in Pseudomonas aeruginosa by dephosphorylating diguanylate cyclase TpbB Biochem. Biophys. Res. Commun. 2010 402: 351-355
20300602 Malone JG et al.: YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa PLoS Pathog. 2010 6
21554516 Mikkelsen H et al.: Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa Environ. Microbiol. 2011 13: 1666-1681
17890313 Vallet-Gely I et al.: Local and global regulators linking anaerobiosis to cupA fimbrial gene expression in Pseudomonas aeruginosa J. Bacteriol. 2007 189: 8667-8676
21205015 Sivaneson M et al.: Two-component regulatory systems in Pseudomonas aeruginosa: an intricate network mediating fimbrial and efflux pump gene expression Mol. Microbiol. 2011 79: 1353-1366
8790418 Whitchurch CB et al.: The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa Proc. Natl. Acad. Sci. U.S.A. 1996 93: 9839-9843
20352420 Cornelis P et al.: Iron uptake and metabolism in pseudomonads Appl. Microbiol. Biotechnol. 2010 86: 1637-1645
10658665 Ochsner UA et al.: Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa Microbiology (Reading 2000 146: 185-198
19906986 Imperi F et al.: Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa Proc. Natl. Acad. Sci. U.S.A. 2009 106
21598370 Wilhelm S et al.: Autotransporters with GDSL passenger domains: molecular physiology and biotechnological applications Chembiochem 2011 12: 1476-1485
20102415 Kim K et al.: HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-kappaB pathway Immunology 2010 129: 578-588
22665491 Sana TG et al.: The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells J. Biol. Chem. 2012 287
21951860 Mishra M et al.: Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization Cell. Microbiol. 2012 14: 95-106
22511866 Li M et al.: Structural basis for type VI secretion effector recognition by a cognate immunity protein PLoS Pathog. 2012 8
22496644 Bucior I et al.: Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium PLoS Pathog. 2012 8
21991261 Franklin MJ et al.: Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl Front Microbiol 2011 2: 167
22401915 Kahle NA et al.: Bacterial quorum sensing molecule induces chemotaxis of human neutrophils via induction of p38 and leukocyte specific protein 1 (LSP1) Immunobiology 2013 218: 145-151
21667084 Muller MM et al.: Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production Appl. Microbiol. Biotechnol. 2011 91: 251-264
17464046 Yang L et al.: Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa Microbiology (Reading 2007 153: 1318-1328
21626303 Okuda J et al.: Degradation of interleukin 8 by the serine protease MucD of Pseudomonas aeruginosa J. Infect. Chemother. 2011 17: 782-792
20805335 Okuda J et al.: Translocation of Pseudomonas aeruginosa from the intestinal tract is mediated by the binding of ExoS to an Na,K-ATPase regulator, FXYD3 Infect. Immun. 2010 78: 4511-4522
21607656 Sonnleitner E et al.: Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species Appl. Microbiol. Biotechnol. 2011 91: 63-79
20626455 Linares JF et al.: The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa Environ. Microbiol. 2010 12: 3196-3212
22927813 Luckett JC et al.: A Novel Virulence Strategy for Pseudomonas aeruginosa Mediated by an Autotransporter with Arginine-Specific Aminopeptidase Activity PLoS Pathog. 2012 8
18245294 Overhage J et al.: Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance J. Bacteriol. 2008 190: 2671-2679
22906320 Lossi NS et al.: The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system Mol. Microbiol. 2012 86: 437-456
21873404 Lossi NS et al.: Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa Microbiology (Reading 2011 157: 3292-3305
22848596 de Lima CD et al.: ExoU Activates NF-kappaB and Increases IL-8/KC Secretion during Pseudomonas aeruginosa Infection PLoS ONE 2012 7
22767897 Basler M et al.: Type 6 secretion dynamics within and between bacterial cells Science 2012 337: 815
22719261 Pukkila-Worley R et al.: Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection PLoS Genet. 2012 8
22710876 Gellatly SL et al.: The Pseudomonas aeruginosa PhoP-PhoQ two-component regulatory system is induced upon interaction with epithelial cells and controls cytotoxicity and inflammation Infect. Immun. 2012 80: 3122-3131
23188826 Van der Meeren R et al.: New insights into the assembly of bacterial secretins: structural studies of the periplasmic domain of XcpQ from Pseudomonas aeruginosa J. Biol. Chem. 2013 288: 1214-1225
22497280 Damron FH et al.: Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa Mol. Microbiol. 2012 84: 595-607
22500651 Dossel J et al.: Pseudomonas aeruginosa-derived rhamnolipids subvert the host innate immune response through manipulation of the human beta-defensin-2 expression Cell. Microbiol. 2012 14: 1364-1375
23071278 Hallstrom T et al.: Dihydrolipoamide dehydrogenase of Pseudomonas aeruginosa is a surface-exposed immune evasion protein that binds three members of the factor H family and plasminogen J. Immunol. 2012 189: 4939-4950
17709513 Kunert A et al.: Immune evasion of the human pathogen Pseudomonas aeruginosa: elongation factor Tuf is a factor H and plasminogen binding protein J. Immunol. 2007 179: 2979-2988
22080193 Okuda J et al.: Complementation of the exoS gene in the pvdE pyoverdine synthesis gene-deficient mutant of Pseudomonas aeruginosa results in recovery of the pvdE gene-mediated penetration through the intestinal epithelial cell barrier but not the pvdE-mediated virulence in silkworms J. Infect. Chemother. 2012 18: 332-340
22496657 Gendrin C et al.: Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa PLoS Pathog. 2012 8
22991039 von Hoven G et al.: Modulation of translation and induction of autophagy by bacterial exoproducts Med. Microbiol. Immunol. 2012 201: 409-418
23306835 Fu P et al.: Role of nicotinamide adenine dinucleotide phosphate-reduced oxidase proteins in Pseudomonas aeruginosa-induced lung inflammation and permeability Am. J. Respir. Cell Mol. Biol. 2013 48: 477-488
23150540 LeRoux M et al.: Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword Proc. Natl. Acad. Sci. U.S.A. 2012 109
23415234 Basler M et al.: Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions Cell 2013 152: 884-894
22765374 Casabona MG et al.: An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa Environ. Microbiol. 2013 15: 471-486
23277552 Korgaonkar A et al.: Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection Proc. Natl. Acad. Sci. U.S.A. 2013 110: 1059-1064
21169497 Korgaonkar AK et al.: Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan J. Bacteriol. 2011 193: 909-917
23209420 de Bentzmann S et al.: Unique biofilm signature, drug susceptibility and decreased virulence in Drosophila through the Pseudomonas aeruginosa two-component system PprAB PLoS Pathog. 2012 8
20192961 Salacha R et al.: The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system Environ. Microbiol. 2010 12: 1498-1512
23311922 Kida Y et al.: EprS, an autotransporter protein of Pseudomonas aeruginosa, possessing serine protease activity induces inflammatory responses through protease-activated receptors Cell. Microbiol. 2013 15: 1168-1181
22835944 Ball G et al.: Type II-dependent secretion of a Pseudomonas aeruginosa DING protein Res. Microbiol. 2012 163: 457-469
3138529 Filloux A et al.: Phosphate regulation in Pseudomonas aeruginosa: cloning of the alkaline phosphatase gene and identification of phoB- and phoR-like genes Mol. Gen. Genet. 1988 212: 510-513
23552891 Russell AB et al.: Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors Nature 2013 496: 508-512
23481600 Howell HA et al.: Type III secretion of ExoU is critical during early Pseudomonas aeruginosa pneumonia MBio 2013 4
9218766 Chapon-Herve V et al.: Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeruginosa Mol. Microbiol. 1997 24: 1169-1178
17351035 Michel GP et al.: XphA/XqhA, a novel GspCD subunit for type II secretion in Pseudomonas aeruginosa J. Bacteriol. 2007 189: 3776-3783
1618748 Kounnas MZ et al.: The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A J. Biol. Chem. 1992 267
19651860 Van Alst NE et al.: Nitrite reductase NirS is required for type III secretion system expression and virulence in the human monocyte cell line THP-1 by Pseudomonas aeruginosa Infect. Immun. 2009 77: 4446-4454
23129634 Recinos DA et al.: Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity Proc. Natl. Acad. Sci. U.S.A. 2012 109
23341461 Lossi NS et al.: The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheathlike structure J. Biol. Chem. 2013 288: 7536-7548
20386693 Oglesby-Sherrouse AG et al.: Characterization of a heme-regulated non-coding RNA encoded by the prrF locus of Pseudomonas aeruginosa PLoS ONE 2010 5: E9930
15210934 Wilderman PJ et al.: Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis Proc. Natl. Acad. Sci. U.S.A. 2004 101: 9792-9797
23132494 Sayeed S et al.: Multifunctional role of human SPLUNC1 in Pseudomonas aeruginosa infection Infect. Immun. 2013 81: 285-291
21632717 Lukinskiene L et al.: Antimicrobial activity of PLUNC protects against Pseudomonas aeruginosa infection J. Immunol. 2011 187: 382-390
22927440 Benabid R et al.: Neutrophil elastase modulates cytokine expression: contribution to host defense against Pseudomonas aeruginosa-induced pneumonia J. Biol. Chem. 2012 287
18802098 Hirche TO et al.: Neutrophil elastase mediates innate host protection against Pseudomonas aeruginosa J. Immunol. 2008 181: 4945-4954
23630954 Mustafi S et al.: Regulation of Rab5 Function during Phagocytosis of Live Pseudomonas aeruginosa in Macrophages Infect. Immun. 2013 81: 2426-2436
9680212 Martinez A et al.: Identification of an additional member of the secretin superfamily of proteins in Pseudomonas aeruginosa that is able to function in type II protein secretion Mol. Microbiol. 1998 28: 1235-1246
11985723 Ball G et al.: A novel type II secretion system in Pseudomonas aeruginosa Mol. Microbiol. 2002 43: 475-485
22131330 Laarman AJ et al.: Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways J. Immunol. 2012 188: 386-393
19730690 Llamas MA et al.: A Novel extracytoplasmic function (ECF) sigma factor regulates virulence in Pseudomonas aeruginosa PLoS Pathog. 2009 5
23911207 Devarajan A et al.: Role of PON2 in innate immune response in an acute infection model Mol. Genet. Metab. 2013 110: 362-370
23570569 Neidig A et al.: TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa BMC Microbiol. 2013 13: 77
23861975 Longo F et al.: A New Transcriptional Repressor of the Pseudomonas aeruginosa Quorum Sensing Receptor Gene lasR PLoS ONE 2013 8
23919994 Robert-Genthon M et al.: Unique features of a Pseudomonas aeruginosa alpha2-macroglobulin homolog
23143799 Cattoir V et al.: Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus MBio 2013 3
22275523 Wei Q et al.: Global regulation of gene expression by OxyR in an important human opportunistic pathogen Nucleic Acids Res. 2012 40: 4320-4333
23990788 Valentine CD et al.: X-Box Binding Protein 1 (XBP1s) Is a Critical Determinant of Pseudomonas aeruginosa Homoserine Lactone-Mediated Apoptosis PLoS Pathog. 2013 9
23041624 Lee RJ et al.: T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection J. Clin. Invest. 2012 122: 4145-4159
20739289 Schwarzer C et al.: Pseudomonas aeruginosa Homoserine lactone activates store-operated cAMP and cystic fibrosis transmembrane regulator-dependent Cl- secretion by human airway epithelia J. Biol. Chem. 2010 285
23690396 Konings AF et al.: Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs Infect. Immun. 2013 81: 2697-2704
24034668 Wang D et al.: Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa BMC Genomics 2013 14: 618
21957445 Lamarche MG et al.: MexEF-OprN efflux pump exports the Pseudomonas quinolone signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline) PLoS ONE 2011 6
23292701 Dong YH et al.: The global regulator Crc plays a multifaceted role in modulation of type III secretion system in Pseudomonas aeruginosa Microbiologyopen 2013 2: 161-172
24098557 Kausar S et al.: Comparative Molecular Docking Analysis of Cytoplasmic Dynein Light Chain DYNLL1 with Pilin to Explore the Molecular Mechanism of Pathogenesis Caused by Pseudomonas aeruginosa PAO PLoS ONE 2013 8
23686852 Boncoeur E et al.: Induction of nitric oxide synthase expression by lipopolysaccharide is mediated by calcium-dependent PKCalpha-beta1 in alveolar epithelial cells Am. J. Physiol. Lung Cell Mol. Physiol. 2013 305: L175-L184
20732998 Angus AA et al.: The ADP-ribosylation domain of Pseudomonas aeruginosa ExoS is required for membrane bleb niche formation and bacterial survival within epithelial cells Infect. Immun. 2010 78: 4500-4510
18316391 Angus AA et al.: Pseudomonas aeruginosa induces membrane blebs in epithelial cells, which are utilized as a niche for intracellular replication and motility Infect. Immun. 2008 76: 1992-2001
21843628 Hritonenko V et al.: Adenylate cyclase activity of Pseudomonas aeruginosa ExoY can mediate bleb-niche formation in epithelial cells and contributes to virulence Microb. Pathog. 2011 51: 305-312
24058462 Heimer SR et al.: Pseudomonas aeruginosa Utilizes the Type III Secreted Toxin ExoS to Avoid Acidified Compartments within Epithelial Cells PLoS ONE 2013 8
24204589 Sana TG et al.: Divergent Control of Two Type VI Secretion Systems by RpoN in Pseudomonas aeruginosa PLoS ONE 2013 8
23720811 Glucksam-Galnoy Y et al.: The bacterial quorum-sensing signal molecule N-3-oxo-dodecanoyl-L-homoserine lactone reciprocally modulates pro- and anti-inflammatory cytokines in activated macrophages J. Immunol. 2013 191: 337-344
24260549 Jones C et al.: Subinhibitory Concentration of Kanamycin Induces the Pseudomonas aeruginosa type VI Secretion System PLoS ONE 2013 8
24327342 Arts IS et al.: Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa MBio 2013 4
23653444 Barbier M et al.: Lysine trimethylation of EF-Tu mimics platelet-activating factor to initiate Pseudomonas aeruginosa pneumonia MBio 2013 4
24312357 Audia JP et al.: In the Absence of Effector Proteins, the Pseudomonas aeruginosa Type Three Secretion System Needle Tip Complex Contributes to Lung Injury and Systemic Inflammatory Responses PLoS ONE 2013 8
24349231 Strempel N et al.: Human Host Defense Peptide LL-37 Stimulates Virulence Factor Production and Adaptive Resistance in Pseudomonas aeruginosa PLoS ONE 2013 8
24379284 Yeung AT et al.: Requirement of the Pseudomonas aeruginosa CbrA Sensor Kinase for Full Virulence in a Murine Acute Lung Infection Model Infect. Immun. 2014 82: 1256-1267
24308329 Wenner N et al.: NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence
24626230 Golovkine G et al.: VE-Cadherin Cleavage by LasB Protease from Pseudomonas aeruginosa Facilitates Type III Secretion System Toxicity in Endothelial Cells PLoS Pathog. 2014 10
23974244 Huber P et al.: Sequential inactivation of Rho GTPases and Lim kinase by Pseudomonas aeruginosa toxins ExoS and ExoT leads to endothelial monolayer breakdown
23796404 Frangipani E et al.: The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa Environ. Microbiol. 2014 16: 676-688
24023939 Balczon R et al.: Pseudomonas aeruginosa exotoxin Y-mediated tau hyperphosphorylation impairs microtubule assembly in pulmonary microvascular endothelial cells PLoS ONE 2013 8
24748613 Cadoret F et al.: Txc, a new type II secretion system of Pseudomonas aeruginosa strain PA7, is regulated by the TtsS/TtsR two-component system and directs specific secretion of the CbpE chitin-binding protein J. Bacteriol. 2014 196: 2376-2386
25009238 Faure LM et al.: Characterization of a novel two-partner secretion system implicated in the virulence of Pseudomonas aeruginosa Microbiology (Reading 2014 160: 1940-1952
24794869 Hachani A et al.: The VgrG proteins are a la carte delivery systems for bacterial type VI effectors J. Biol. Chem. 2014 289
24589350 Whitney JC et al.: Genetically distinct pathways guide effector export through the type VI secretion system Mol. Microbiol. 2014 92: 529-542
24528863 Elsen S et al.: A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia Cell Host Microbe 2014 15: 164-176
26080006 Belon C et al.: A Macrophage Subversion Factor Is Shared by Intracellular and Extracellular Pathogens PLoS Pathog. 2015 11
25784698 Burstein D et al.: Novel type III effectors in Pseudomonas aeruginosa MBio 2015 6
24699069 Neeld D et al.: Pseudomonas aeruginosa injects NDK into host cells through a type III secretion system Microbiology (Reading 2014 160: 1417-1426
26037124 Sana TG et al.: Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network MBio 2015 6
25375398 Tran CS et al.: The Pseudomonas aeruginosa type III translocon is required for biofilm formation at the epithelial barrier PLoS Pathog. 2014 10
25894344 Ravichandran A et al.: Global Regulator MorA Affects Virulence-Associated Protease Secretion in Pseudomonas aeruginosa PAO1 PLoS ONE 2015 10
25447517 Phippen CW et al.: Formation and dimerization of the phosphodiesterase active site of the Pseudomonas aeruginosa MorA, a bi-functional c-di-GMP regulator FEBS Lett. 2014 588: 4631-4636
17803773 Meissner A et al.: Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate Environ. Microbiol. 2007 9: 2475-2485
25845843 Ince D et al.: Secretion of Flagellar Proteins by the Pseudomonas aeruginosa Type III Secretion-Injectisome System J. Bacteriol. 2015 197: 2003-2011
24782516 Kulkarni PR et al.: A sequence-based approach for prediction of CsrA/RsmA targets in bacteria with experimental validation in Pseudomonas aeruginosa Nucleic Acids Res. 2014 42: 6811-6825
25926530 Miklavic S et al.: The Pseudomonas aeruginosa RhlR-controlled aegerolysin RahU is a low-affinity rhamnolipid-binding protein
25136128 Eierhoff T et al.: A lipid zipper triggers bacterial invasion Proc. Natl. Acad. Sci. U.S.A. 2014 111
25119038 Moura-Alves P et al.: AhR sensing of bacterial pigments regulates antibacterial defence Nature 2014 512: 387-392
24917597 Rangel SM et al.: The ADP-ribosyltransferase domain of the effector protein ExoS inhibits phagocytosis of Pseudomonas aeruginosa during pneumonia MBio 2014 5
24385476 Azghani AO et al.: Mechanism of fibroblast inflammatory responses to Pseudomonas aeruginosa elastase Microbiology (Reading 2014 160: 547-555
24499192 Chai W et al.: Pseudomonas pyocyanin stimulates IL-8 expression through MAPK and NF-kappaB pathways in differentiated U937 cells BMC Microbiol. 2014 14: 26
11591691 Mavrodi DV et al.: Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1 J. Bacteriol. 2001 183: 6454-6465
18802092 Rada B et al.: The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells J. Immunol. 2008 181: 4883-4893
12871859 O'Malley YQ et al.: The Pseudomonas secretory product pyocyanin inhibits catalase activity in human lung epithelial cells Am. J. Physiol. Lung Cell Mol. Physiol. 2003 285
18845244 Schwarzer C et al.: Oxidative stress caused by pyocyanin impairs CFTR Cl(-) transport in human bronchial epithelial cells Free Radic. Biol. Med. 2008 45: 1653-1662
10024562 Britigan BE et al.: The Pseudomonas aeruginosa secretory product pyocyanin inactivates alpha1 protease inhibitor: implications for the pathogenesis of cystic fibrosis lung disease Infect. Immun. 1999 67: 1207-1212
20962773 Rada B et al.: Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseudomonas pyocyanin Mucosal Immunol 2011 4: 158-171